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Mechanical systems with cyclic coordinates subject to dissipative forces with complete dissipation and constant forces applied 
only to the cyclic variables are considered. Problems of the existence of steady motions in such systems and the conditions for 
their stability are discussed. It is shown, in particular, that if the Rayleigh function is proportional to the kinetic energy, the stability 
conditions for the steady motions of the system are the same as or (under certain assumptions) similar to such conditions for 
steady motions of a corresponding conservative system. The example of a physical pendulum is used to show that such conclusions 
are generally false: dissipative and constant forces may cause destabilization of stable motions of the system. © 1998 Elsevier 
Science Ltd. All rights reserved. 

1. Cons ider  a conservat ive  mechanica l  system with n degrees  of  f reedom,  assuming that  ne i ther  the 
kinetic energy  T nor  the potent ia l  energy V of  the system depend  on m < n genera l ized coordinates .  
D e n o t e  these  coord ina tes  by s = (Sl . . . . .  sin) T and the others  by r = (r l, . . . ,  rk) T (k + m = n; the 
superscr ip t  T deno tes  t ransposi t ion).  The  coordinates  r and s, as is well known, are re fe r red  to as 
posi t ional  and cyclic coord ina tes  respectively. Thus  

T = ~ [(A(r)i ' ,  i-) + 2(B(r) / ' , s )  + (C(r)s ,s)] ,  V = V(r)  

where  A and C are  symmetr ic  k x k and m x m matrices,  respectively and B is an m x k matrix, such 
that  

J: ":H 
is the matr ix  of  a posit ive-defini te quadrat ic  form. 

Two formula t ions  of  the p rob l em of  steady mot ion  are widely used for systems with cyclic coordinates.  
In one  case, it is a s sumed  that  no addit ional  forces are acting on the system. Here ,  the system admits  
o f  m cyclic integrals  dT/~s = c and may  pe r fo rm  steady mot ions  of  the fo rm 

• o = c-l(rO)c r = r  °, i'=0, s=sc°t+s °, s=s~ 

where  the constants  s o are arbi t rary and the constants  r ° are de te rmined  f rom the system 

(1.1) 

0 V ~ / 0 r = 0 ,  V c = V ( r ) + ~ ( C - n ( r ) c , c )  (1.2) 

In  the o the r  case,  it is assumed that  the system is subject to control  forces that  keep  the general ized 
cyclic velocit ies cons tan t  in all motions:  i - to. In that  case the system admits  of  relative equilibria of  
the  fo rm 

r = r m  °, i ' - -0 ,  s = t o t + s  °, s = o ~  

where  the constants  s o are arbi t rary and the constants  r ° are de te rmined  f rom the system 

(1.3) 

0Vco /0 r=0 ,  Vco = V ( r ) - ~ ( C ( r ) t o ,  to) (1.4) 
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The first form of the problem goes back to Routh [1], and the second, to Poincar6 [2]. By Lagrange's 
theorem, the relative equilibrium (1.3) is stable (with respect to r and/ ')  if the changed potential V,o 
takes a strictly minimum value at the point r ° (see [3--6]). By Routh's theorem, the steady motion (1.1) 
is stable (with respect to r,/" and ~) if the reduced potential V¢ takes a strictly minimum value at the 
point r ° (see [1, 7-9]). Note that there is a complete correspondence between the steady motions (1.1) 
and the relative equilibria (1.3), provided the arbitrary constants c and o) have a certain relationship; 
the stability conditions for both settings also correspond in a certain sense (see [2, 10-14]). 

However, both settings of the problem are in a sense idealized, since they make no allowance for 
the effect of dissipative forces, which are always present in real systems and, in particular, destroy the 
cyclic integrals of the free system. In addition, it is extremely difficult in practice to produce control 
forces that keep the generalized cyclic velocities constant in all motions of the controlled system 
(independently of the variation of the positional variables). 

In this paper it is assumed that, apart from potential forces, the system is also subject to dissipative 
forces with complete dissipation, the derivatives of the Rayleigh function fO (f  being a positive 
parameter), where 

= ~ [ (D(r) i ' ,  i') + 2(E(r) i ' ,  s)  + (F(r ) s ,  s)] 

and constant forcesfp, where D and F are symmetric k x k and m x rn matrices, respectively, E is an m x k 
matrix and p is an n-dimensional vector of the form (0 ... .  O,pl,... ,Pm)r (the zero components of p correspond 
to the positional variables). Under these conditions, the equations of motion of the system have the form 

d aT aT aV ~ d aT ~I~ (1.5) 
dt ar =Or Or f ' - ~ ~  = f p -  f ~ '  

This formulation of the problem is due to Pozharitskii [15], who assumed that D, E and F are constant 
matrices. Non-constant matrices D, E and F have been considered in a few special cases [1611 In both 
the aforementioned papers, however, it was also assumed that the vector p has no zero components, 
i.e. that constant forces were applied with respect to all variables. Note that the actual production of 
constant forces for positional variables is extremely difficult, whereas that is easily done for cyclic variables 
in many applied problems (a gyroscope in gimbals, a body with slide-wire drive, etc.). 

2. Let us consider the system described by Eqs (1.5), assuming that • = T, that is, the Rayleigh 
dissipation function is proportional to the kinetic energy. Such dissipation is a model of, for example, 
the influence of a resistant medium. In that case system (1.5) becomes 

dOT OT OV OT dOT f (  aT) 
at ar = Dr Or f "~r' at ~ = P - ~ s  (2.1) 

System (2.1) admits of particular integrals 

bTIO's = p (2.2) 

which determine the invariant set of the system. This invariant set is asymptotically stable in the large, 
since it follows from the second group of system (2.1) that 

(aT / 0s - p) = (0T / 0s - P)oe-f~t-t°J 

(recall that f > 0; the subscript zero means that the relevant expression is evaluated at t -- to). 
Let us consider the system in the asymptotically stable invariant set (2.2). Solving (2.2) for the 

generalized cyclic velocities, we obtain 

= C-~(r)(p - B(r)i') (2 .3)  

Introducing Routh's function 

R = [ T -  V - (P,S)]{2.3) = R(r;i ' ;p)  = R 2 + R I + Ro 

R 2 = ~ ( M ( r ) i ' , i ' ) ,  R I =(gt , ( r ) , i ' ) ,  Ro =-Vp(r) 
M(r) = A -  WC-tB, gp(r) = WC-lp,  Vp(r) = V + ~(C-tp,  p) 
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Thus, the motion of the system in the asymptotically stable invariant set (2.2) is described by Routh's 
equations 

d 3R 3R _ 3R 
dt 3r = ~r  - f ~ (2.4) 

Taking the structure of the Routh function into consideration, we rewrite system (2.4) as 

d 3R2 3R2 3Vp 3R2 (2.5) 
dt 3i" = ~gr +Gp/ ' -  3r - fgp  - f  3i" 

Gp ~ 3r.) ~,3r.) '  i.e. G ~ = - G p  

Equations (2.5) describe the motion of a certain system with degrees of freedom in which R2 plays 
the part of the kinetic energy. We will refer to this as the "reduced" system. Clearly, the "reduced" 
system is subject to the action of potential forces--the derivatives of the "reduced" potential Vp, 
gyroscopic forces G/', dissipative forces--the derivatives of the Rayleigh function fR2 and generalized 

• • P . • 

posmonal forces f ~  (which need not be potential forces). 
Note that i f f  = 0, the particular integrals (2.2) become general integrals, and the system and the 

function V, are identical with the reduced system in Routh's sense and the reduced potential (without 
. /-" 

quotation marks), respectively. 
The equilibrium positions r = ~ / "  = 0 of the "reduced" system correspond to the steady motions 

r = r ,  °, i '=0, s = s ° t + s  °, s-'°:C-'(rp°)p-Sp (2.6) 

of the system we are considering. The constants s o are arbitrary and the constants r ° are determined 
from the system 

3Vt,/3r +fgp = 0 (2•7) 

It is obvious that system (2.7) becomes (1.2) and the steady motions (2.6) become the steady motions 
(1.1) not only w h e n f  = 0 (and p = c), which is natural, but also when go --- 0. This happens provided 
that B --- 0, which means that the kinetic energy does not contain products of positional and cyclic 
velocities. Then Eq. (2.5) admits of a generalized energy equation 

d(R2 + V~)/dt = -2]R2 ~ 0 (2.8) 

Thus the following propositions are true (cf. [16]). 

Theorem 2.1. If B -- 0 and p = c, then the steady motions of a system subject to dissipative forces-- 
the derivatives of a Rayleigh function proportional to the kinetic energy--and constant forces applied 
only with respect to the cyclic variables, are identical with the steady motions of the corresponding 
conservative system• 

Theorem 2.2. If B - 0, the "reduced" potential Vp has a strict local minimum at the point r~ and this 
point is isolated from the other stationary points of the "reduced" potential, then the steacly motion 
(2.6) is asymptotically stable (with respect to r,/', ~). 

, ,  7 '  0 Theorem 2.3. If B -- 0 and the reduced potential Vp takes a stationary value at the point rp which 
is not even a non-strict minimum of V e, and this point is isolated from the other stationary points of 
the "reduced" potential, then the steady motion (2.6) is unstable• 

Theorem 2.1 follows from (2.7), Theorem 2.2 follows from the asymptotic stability of the invariant 
set (2.2) and the Barbashin-Krasovskii theorem [17], and Theorem 2.3 follows from Krasovskii's theorem 
[17]. 

0 0 3. Now consider the case B(r) * 0, assumin~ that B(r¢) = 0, where rc is a solution of system (1.2). 
0" 0 Then, if p = c, it follows from Eq. (2.7) that rp = rc. We have thus proved the following theorem. 
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Theorem 3.1. If B(r°c) = 0 and p = c, then the steady motion (2.6) of a system subject to the action 
of dissipative forces--the derivatives of a Rayleigh function proportional to the kinetic energy--and 
constant forces applied only with respect to the cyclic variables, is identical with the steady motion of 
the corresponding conservative system. 

In the case under consideration, the generalized energy equation has the form 

d ( R  + = -2fR 2 - f(gp(r),~) (3.1) 

The right-hand side of Eq. (3.1) is always sign-variable when gp(r) ¢ 0, and it is therefore impossible 
to investigate the stability of the steady motions (2.6) by direct application of the theorems of Lyapunov's 
direct method even when p = e and gp(r °) = 0 (B)(r °) = 0. However, if p = e and not only gp(r) 
but also 0gp/0r vanish at r = r°c, we can rewrite (3.1) as 

d / dt(R 2 (r° ;r) + 82Vp (r)) = -2fR2(rc°; b) + o ( ~ l  2 + [[/[2) (3.2) 

8 2 Vp (r )  = ~ ( (0  2 V. (r )  I c)r 2)o fir, 8r) ,  8r  = r - rc ° 

The subscript zero means that the relevant expression is evaluated at r = r °. 
As before, the right-hand side of (3.2) is of variable sign. However, it implies that if p = e, the linearized 

equations of the perturbed motion of the "reduced" system admit of an "energy" equation in the 
neighbourhood of its equilibrium position r = r ° = r °, f = 0, namely 

d I dt(R2(r°c; ~)+ ~i2Vt,(r)) = -2fR2 (r°;i  ") ~< 0 (3.3) 

Thus, the following propositions are true. 

0 Theorem 3.2. If B(rc) = 0, (0gc/0r)0 = 0, p = c and all the eigenvalues of the matrix (02Vp/Or2)o are 
positive, the steady motion (2.6) is asymptotically stable (with respect to r,/" and ~). 

Theorem 3.3. If B(r °) = 0, (0gJ0r)0 = 0, p = c and at least one of the eigenvalues of the matrix 
(02V.~01~)0 is negative, the steady, motion (2.6) is unstable. 

Indeed under the assumptions of Theorem 3.2, the trivial solution of the linearized equations of 
the perturbed motion of the "reduced" system is asymptotically stable in the neighbourhood of its 
position of equilibrium r = ~ = rc °, i" = 0, by the Barbashin-Krasovskii theorem. Consequently, all the 
roots of the corresponding characteristic equation lie in the left half-plane. This means that this 
equilibrium of the "reduced" system is asymptotically stable (with respect to r and i') by virtue of 
the full equations of perturbed motion of the "reduced" system. Recalling that the "reduced" system 
describes the motion of the initial system in an asymptotically stable invariant set, we conclude that 
the steady motion (2.6) of the system is asymptotically stable (with respect to r, i and ~). 

Under the assumptions of Theorem 3.3, the characteristic equation of the linearized "reduced" system 
has a root in the right-hand half-plane. Consequently, the steady motion (2.6) is unstable, by Lyapunov's 
theorem on instability in the first approximation and a remark of Chetayev [5] (to prove instability, we 
can confine our attention to perturbed motions on the invariant set). 

4. We will now consider the case in which g~(r) = grad Fp(r), where F~(r) is some scalar 
function. The system may perform steady motions (2.6) if the constants r ° satisfy the following system 
of equations (see (2.7)) 

~Wp.f/Dr=0; Wp.f = Vp(r)+JFp(r) (4.1) 

In addition, system (2.5) in this case admits of a generalized energy equation 

d(R 2 + Wp,/)ldt = - f R  2 <~ 0 (4.2) 

Let us call the function. W,t,,f the perturbed."reduced" potential. If the dissipation constant f is 
sufficiently small, the soluuon of system (4.1) wdl be 

0 0 I r = rt; ( f )  = r~ + fr~+... (4.3) 
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where r ° is the solution of system (4.1) a t f  = 0, i.e. if p = c is a solution of system (1.2). Under these . . , -  
condmons the steady motions (2.6) of the system have the form 

r=r°(f) ,  / '=0, s=s°(f)t+s °, s=s°(f)=C-'(rfl(f))p (4.4) 

Obviously, the point r°,(f) gives the perturbed "reduced" potential W. a stationary value, and the 
• ,- p , f  

steady moUon (4.4) is asymptotically stable (unstable) if r°(f) gives the perturbed "reduced" potential 
a strictly minimum value (does not give it even a non-strictly minimum value) and is isolated from other 
stationary points of the potential (see (4.1) and (4.2)). 

Note that gp(r) = grad Fe(r ) if and only if the system is gyroscopically disconnected, i.e. if and only 
if G,(r) - 0 [18]. In particular, ~,(r) = grad F,(r) if dim r = 1. 

I /p  = c and the coefficientfis s'~ufficiently smrall, then r°(f) is close to r°c (see (4.3)). In addition, if that 
is the case, the perturbed "reduced" potential Wp e(r) has a strict minimm'n (does not even have a non- 
strict minimum) at the point r°(f) if all the eigen(,~lues of the matrix ~Vc/~r 2 are positive (if the matrix 
c~Vc/#r 2 has a negative eigenvalue) at the point r°c . We have thus proved the following propositions. 

Theorem 4.1. The steady motions (4.4) of a gyroscopically disconnected system subject to dissipative 
forces---the derivatives of a Rayleigh function proportional to the kinetic energy--and constant forces 
applied only with respect to the cyclic variables, are close at p = c to the steady motions (1.1) of the 
corresponding conservative system. 

Theorem 4.2. The steady motion (4.4) is asymptotically stable (with respect to r,/" and s) if p = c, the 
dissipation coefficient is small and the reduced potential of the corresponding conservative system has 
a strict minimum in the corresponding steady motion (1.1), where the existence of the minimum is already 
determined by the second variation of the reduced potential. 

Theorem 4.3. The steady motion (4.4) is unstable if p = c, the dissipation coefficient is small and the 
reduced potential of the corresponding conservative system does not have even a non-strict minimum 
at the corresponding steady motion (1.1), the absence of the minimum being determined by the second 
variation of the reduced potential. 

Theorem 4.1 follows from (4.3); Theorems 4.2 and 4.3 follow from relation (4.2) and from the fact 
that (when p = c and f is small) the perturbed "reduced" potential Wg.f(r) is close to the reduced 
potential Vc(r ). 

R e m a r k .  Theorems 4.1-4.3 remain valid not only when p = c but also when p is close to e. Theorem 4.1 also 
holds for gyroscopically connected systems (see (2.7)). 

Thus, even in the simple case just considered, when the Rayleigh dissipation function is proportional 
to the kinetic energy, the steady motions of a system subject to dissipative and constant forces applied 
only with respect to the cyclic variables, and the conditions for their stability, are identical with the steady 
motions of the corresponding conservative system and the conditions for its stability, or are close to 
the latter under additional conditions as indicated above. In the general case no such conclusions are 
possible (see the next section)• 

5, Consider a physical pendulum suspended on a horizontal axis Ox, which may revolve around the 
vertical OZ. Let us assume that the Ox axis is one of the principal axes of inertia of the body about O. 
Denote the two other principal axes by Oy and Oz and assume that the centre of mass of the body lies 
on Oz at a distance d from O. Let m be the mass of the body, letA, B and C be its principal moments 
of inertia about the Ox, Oy and Oz, axes and g is the acceleration due to gravity. The position of the 
body is defined by the coordinates 0 and V, where 0 is the angle between the downward vertical and 
the Oy axis, and ~ is the angle of rotation of the axis Ox about OZ. Then the kinetic energy T and the 
potential energy V of the body are 

T = ~ [ A 0  2 + J(O)~/2], V = - m g d c o s O ;  J(O) = Bsin 2 0 +  Ccos  2 O 

Let us assume that the system is subject to dissipative forces (derivatives of the Rayleigh function 
fT) and a constant torquefp applied along the OZ axis. Then the equations of motion of the body are 

d ~T ~T ~V ~T d 0T . f ~ T  (5.1) 
dt = ao f at = t p -  
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In accordance with our previous results, we define the Routh function R = T - V - pw, where the 
generalized cyclic velocity ~ is eliminated using the particular integral OT/b~ = p of system (5.1). Using 
these conditions 

R= t~A0 2 -Vp(O), Vp = V + l/2p 2/J(O) (5.2) 

Obviously, these relations are identical with those defining the Routh function and the reduced 
potential of the corresponding conservative system, which is obtained from the system under considera- 
tion by put t ingf  = 0 (p is then the constant of the general integral OT/a(¢ = p). 
• Taking into account that the system is gyroscopically disconnected (the kinetic energy does not contain 
0~), we conclude from the results of Section 2 that all our conclusions concerning the existence and 
stability of steady motions of the physical pendulum in the classical setting (f  = 0) extend to the case 
f>0.  

Thus, in this problem steady motions 

0=o, 0=0, ;¢=p/C (5.3) 

O = re, b = O, ~g = p lC (5.4) 

exist where 0p is a root of the equation 

o = op, b = o, v = p/](op) (5.5) 

p2 = ,/2(0 ) (5•6) 
mdg ( B -  C)cos0 

The stability (instability) conditions for the steady motions (5.3)-(5.5) are, respectively 

(B - C)p 2 
mgd C2 > 0 (< 0) (5.7) 

( B -  C)p 2 
- m g d -  C2 > 0 (< 0) (5.8) 

4 (B-  C)c°s2 0P ] > 0 (<0) 
( B -  C) 1 -~ J(0)p (5.9) 

and they are identical with the stability (instability) conditions for the system without dissipative and 
constant forces (see, for example [14]). 

We will now consider the case in which the Rayleigh dissipation function f ~  has the same structure 
as the kinetic energy of the body but is not proportional to it 

~ = ~ [ D 0 2 + l ( 0 ) ~ t 2 ] ,  l (O)=Esin2O+Fcos20 (D>0,  E > 0 ,  F > 0 )  

Then the equations of motion of the body differ from (5.1) in that fOT/O0 on the right of the equations 
must be replaced byf0T~/~0 and f0T/c~ byf0~//9~; these equations need not necessarily admit of even 
particular integrals• 

Nevertheless, they do have steady solutions 

o--o, o:o,  v :p / e  (5.10) 

0 = n ,  0 = 0 ,  v = p / e  (5.11) 

where 0p is a root of the equation 

o = 0p, 0 = o, q, = p/t(0,) (5.12) 
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x d7 
(a) (b) 

Fig. 1. 

p2 = 12(0) (5.13) 
mdg ( B -  C)cos0 

In a certain sense, solutions (5.10)-(5.12) are analogous to (5.3)-(5.5) (even when allowance is made 
for the difference between Eqs (5.6) and (5.13)). 

Stability investigation of the steady motions (5.10)-(5.12), based on analysing the roots of the 
characteristic equation of the linearized system of equations of the perturbed motion, implies the 
following results. The solutions (5.10) and (5.11) are stable (unstable) provided that, respectively 

mgd- (p/F)2(B - C) > 0 (< O) (5.14) 

mgd + (p/F)2(B - C) < 0 (> O) (5.15) 

Investigating the stability of the motion (5.12), let us assume thatfis a small quantity. Then the stability 
(instability) conditions are 

(B - C)[D(Bsin  2 Or, + Ccos 2 Or, )(B + 3(B - C) cos 2 0p ) + 

+4Acos 20t , (FB-  EC)] > 0 (< 0) (5.16) 

( B -  C ) [ E + 3 ( E -  F)cos 2 0p] > 0 (< 0) 

A geometric interpretation of these conditions is shown in Fig. 1, where we have introduced the 
notation x = F/B,  y = E/B.  T h e  angle tx is determined from the equation tgct = 1 + (3cos20) -1, and 13 
from the equation tgl~ = C/B. T h e  stability domain is shown hatched. Cases a and b correspond to the 
conditions C < B and 3Ccos20 > 3Bcos20 + B, respectively. If these conditions do not hold, the motions 
(5.12) are unstable. 

Thus, if the Rayleigh dissipation function is not proportional to the kinetic energy, the influence of 
dissipative and constant forces may destabilize motions of the system that are s table when there are 
no such forces. 

This research was supported financially by the Russian Foundation for Basic Research (96-15-96051 
and 98-01-00041a). 
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